510 research outputs found

    On a branch-and-bound approach for a Huff-like Stackelberg location problem

    Get PDF
    Modelling the location decision of two competing firms that intend to build a new facility in a planar market can be done by a Huff-like Stackelberg location problem. In a Huff-like model, the market share captured by a firm is given by a gravity model determined by distance calculations to facilities. In a Stackelberg model, the leader is the firm that locates first and takes into account the actions of the competing chain (follower) locating a new facility after the leader. The follower problem is known to be a hard global optimisation problem. The leader problem is even harder, since the leader has to decide on location given the optimal action of the follower. So far, in literature only heuristic approaches have been tested to solve the leader problem. Our research question is to solve the leader problem rigorously in the sense of having a guarantee on the reached accuracy. To answer this question, we develop a branch-and-bound approach. Essentially, the bounding is based on the zero sum concept: what is gain for one chain is loss for the other. We also discuss several ways of creating bounds for the underlying (follower) sub-problems, and show their performance for numerical cases

    Quench Propagation in the Superconducting 6 kA Flexible Busbars of the LHC

    Get PDF
    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit components

    Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1β release through pyrophosphates

    Get PDF
    In acute inflammation, extracellular ATP activates P2X7 ion channel receptors (P2X7R) on M1 polarized macrophages to release pro-inflammatory IL-1β through activation of the caspase-1/nucleotide-binding domain and leucine-rich repeat receptor containing pyrin domain 3 (NLRP3) inflammasome. In contrast, M2 polarized macrophages are critical to the resolution of inflammation but neither actions of P2X7R on these macrophages nor mechanisms by which macrophages switch from pro-inflammatory to anti-inflammatory phenotypes are known. Here, we investigated extracellular ATP signalling over a dynamic macrophage polarity gradient from M1 through M2 phenotypes. In macrophages polarized towards, but not at, M2 phenotype, in which intracellular IL-1β remains high and the inflammasome is intact, P2X7R activation selectively uncouples to the NLRP3-inflammasome activation but not to upstream ion channel activation. In these intermediate M1/M2 polarized macrophages, extracellular ATP now acts through its pyrophosphate chains, independently of other purine receptors, to inhibit IL-1β release by other stimuli through two independent mechanisms: inhibition of ROS production and trapping of the inflammasome complex through intracellular clustering of actin filaments

    Isolamento e seleção de rizóbios de solos de Mato Grosso Do Sul para inoculação em feijoeiro comum

    Get PDF
    bitstream/item/66207/1/32003.pdfFERTBI

    How do lizard niches conserve, diverge or converge? Further exploration of saurian evolutionary ecology

    Get PDF
    Background: Environmental conditions on Earth are repeated in non-random patterns that often coincide with species from different regions and time periods having consistent combinations of morphological, physiological and behavioral traits. Observation of repeated trait combinations among species confronting similar environmental conditions suggest that adaptive trait combinations are constrained by functional tradeoffs within or across niche dimensions. In an earlier study, we assembled a high-resolution database of functional traits for 134 lizard species to explore ecological diversification in relation to five fundamental niche dimensions. Here we expand and further examine multivariate relationships in that dataset to assess the relative influence of niche dimensions on the distribution of species in 6-dimensional niche space and how these may deviate from distributions generated from null models. We then analyzed a dataset with lower functional-trait resolution for 1023 lizard species that was compiled from our dataset and a published database, representing most of the extant families and environmental conditions occupied by lizards globally. Ordinations from multivariate analysis were compared with null models to assess how ecological and historical factors have resulted in the conservation, divergence or convergence of lizard niches. Results: Lizard species clustered within a functional niche volume influenced mostly by functional traits associated with diet, activity, and habitat/substrate. Consistent patterns of trait combinations within and among niche dimensions yielded 24 functional groups that occupied a total niche space significantly smaller than plausible spaces projected by null models. Null model tests indicated that several functional groups are strongly constrained by phylogeny, such as nocturnality in the Gekkota and the secondarily acquired sit-and-wait foraging strategy in Iguania. Most of the widely distributed and species-rich families contained multiple functional groups thereby contributing to high incidence of niche convergence. Conclusions: Comparison of empirical patterns with those generated by null models suggests that ecological filters promote limited sets of trait combinations, especially where similar conditions occur, reflecting both niche convergence and conservatism. Widespread patterns of niche convergence following ancestral niche diversification support the idea that lizard niches are defined by trait-function relationships and interactions with environment that are, to some degree, predictable and independent of phylogeny.Fil: Pelegrin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Winemiller, Kirk Owen. Texas A&M University; Estados UnidosFil: Vitt, Laurie J.. University Of Oklahoma; Estados UnidosFil: Fitzgerald, Daniel B.. United States Geological Survey; Estados UnidosFil: Pianka, Eric R. University of Texas at Austin; Estados Unido

    Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study.

    Get PDF
    Antimicrobial resistance (AMR) poses a threat to public health. Clinical microbiology laboratories typically rely on culturing bacteria for antimicrobial-susceptibility testing (AST). As the implementation costs and technical barriers fall, whole-genome sequencing (WGS) has emerged as a 'one-stop' test for epidemiological and predictive AST results. Few published comparisons exist for the myriad analytical pipelines used for predicting AMR. To address this, we performed an inter-laboratory study providing sets of participating researchers with identical short-read WGS data from clinical isolates, allowing us to assess the reproducibility of the bioinformatic prediction of AMR between participants, and identify problem cases and factors that lead to discordant results. We produced ten WGS datasets of varying quality from cultured carbapenem-resistant organisms obtained from clinical samples sequenced on either an Illumina NextSeq or HiSeq instrument. Nine participating teams ('participants') were provided these sequence data without any other contextual information. Each participant used their choice of pipeline to determine the species, the presence of resistance-associated genes, and to predict susceptibility or resistance to amikacin, gentamicin, ciprofloxacin and cefotaxime. We found participants predicted different numbers of AMR-associated genes and different gene variants from the same clinical samples. The quality of the sequence data, choice of bioinformatic pipeline and interpretation of the results all contributed to discordance between participants. Although much of the inaccurate gene variant annotation did not affect genotypic resistance predictions, we observed low specificity when compared to phenotypic AST results, but this improved in samples with higher read depths. Had the results been used to predict AST and guide treatment, a different antibiotic would have been recommended for each isolate by at least one participant. These challenges, at the final analytical stage of using WGS to predict AMR, suggest the need for refinements when using this technology in clinical settings. Comprehensive public resistance sequence databases, full recommendations on sequence data quality and standardization in the comparisons between genotype and resistance phenotypes will all play a fundamental role in the successful implementation of AST prediction using WGS in clinical microbiology laboratories

    Anisolepis longicauda

    Get PDF
    Anisolepis longicauda is listed as Vulnerable because the extent of occurrence is approximately 7,750 km2, the species occurs in two locations (defined by habitat loss from dam construction), and there is an ongoing decline in the extent and quantity of its habitat as a result of the construction of the Yacireta dam.Fil: Arzamendia, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Fitzgerald, L.. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Giraudo, Alejandro Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Kacoliris, F.. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; ArgentinaFil: Montero, R.. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Pelegrin, Nicolas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Scrocchi Manfrini, Gustavo Jose. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Williams, J.. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentin

    Cooperative ordering of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinker ZapA

    Get PDF
    During bacterial cell division, the tubulin-homolog FtsZ forms a ring-like structure at the center of the cell. This Z-ring not only organizes the division machinery, but treadmilling of FtsZ filaments was also found to play a key role in distributing proteins at the division site. What regulates the architecture, dynamics and stability of the Z-ring is currently unknown, but FtsZ-associated proteins are known to play an important role. Here, using an in vitro reconstitution approach, we studied how the well-conserved protein ZapA affects FtsZ treadmilling and filament organization into large-scale patterns. Using high-resolution fluorescence microscopy and quantitative image analysis, we found that ZapA cooperatively increases the spatial order of the filament network, but binds only transiently to FtsZ filaments and has no effect on filament length and treadmilling velocity. Together, our data provides a model for how FtsZ-associated proteins can increase the precision and stability of the bacterial cell division machinery in a switch-like manner
    corecore